МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УТВЕРЖДАЮ

Первый заместитель Министра

_ Д.Л. Пиневич

«*Lawan peles* 2019 г. Рег. номер № 038-0419

МЕТОД ОПРЕДЕЛЕНИЯ ВЕРОЯТНОСТИ ОСТРЫХ ЭКСТРАПИРАМИДНЫХ ЛЕКАРСТВЕННО-ИНДУЦИРОВАННЫХ ОСЛОЖНЕНИЙ У ПАЦИЕНТОВ С ПАРАНОИДНОЙ ШИЗОФРЕНИЕЙ

инструкция по применению

УЧРЕЖДЕНИЯ-РАЗРАБОТЧИКИ: учреждение образования «Белорусский государственный медицинский университет», государственное учреждение «Республиканский научно-практический центр психического здоровья», государственный научное учреждение «Институт генетики и цитологии НАН Беларуси»

АВТОРЫ:

Горгун О.В., к.м.н. Объедков В.Г., д.м.н. Скугаревский О.А., к.б.н. Голоенко И.М.,д.м.н. Скугаревская М.М.

Настоящая инструкция по применению (далее – инструкция) разработана для оценки вероятности возникновения острых лекарственно-индуцированных расстройству пациентов с параноидной шизофренией, которые нуждаются в лечении антипсихотиками. Метод основан на наличии связи между полиморфными локусами генов *CYP2D6*, *DRD2/ANKK1*, *MDR1*, *GST-M1*, *GST-T1* и вероятностью возникновения острых лекарственно-индуцированных акатизиии паркинсонизма и может быть использован в оказании комплексных медицинских услуг пациентам с параноидной шизофренией.

Данная инструкция предназначена для врачей-психиатров-наркологов.

СПИСОК ИСПОЛЬЗУЕМЫХ СОКРАЩЕНИЙ

ЭПС – экстрапирамидный синдром.

ПОКАЗАНИЯ К ПРИМЕНЕНИЮ

Параноидная шизофрения (F20.01, F20.00, F20.02, F20.03, F20.09).

ПРОТИВОПОКАЗАНИЯ

Противопоказаний нет.

ПЕРЕЧЕНЬ НЕОБХОДИМЫХ МЕДИЦИНСКИХ ИЗДЕЛИЙ, РЕАКТИВОВ И Т.Д.

- 1) Ватные палочки в неповрежденной упаковке или специальные разовые зонды с синтетическим ворсом в индивидуальной упаковке.
 - 2) Стерильные одноразовые пробирки типа «Эппендорф».
- 3) Специальный медицинский контейнер для транспортировки биоматериала.
- 4) Оборудование и реагенты для проведения выделения ДНК из биоматериала и генотипирования (приложение 1).

ЭТАПЫ ПРОВЕДЕНИЯ ИССЛЕДОВАНИЯ

Этап 1. Подготовка пациента к получению биологического материала

- 1. За полчаса до сбора образцов пациент должен воздержаться от еды, питья, а также курения.
- 2. Непосредственно перед получением образцов биологического материала пациент должен тщательно прополоскать рот водой или физиологическим раствором.

Этап 2. Сбор биологического материала

- 1. Извлеките чистую ватную палочку или специальный зонд из упаковки, касаясь их пальцами только за один кончик.
- 2. Аккуратно и с нажимом протрите ватной палочкой или специальным зондом внутреннюю поверхность обеих щёк. Следует сделать 10-20 движений палочкой или зондом, поворачивая их во рту. Продолжительность по времени 30-45 секунд.
- 3. Отрежьте ножницами и выбросьте тот конец ватной палочки или нерабочую часть зонда, за которые держались рукой. При этом не касайтесь пальцами и посторонними предметами той части палочки или зонда, на которой содержится биологический материал в виде буккального эпителия.
- 4. Оставшуюся часть ватной палочки или зонда положите для просушки на отдельный чистый лист бумаги.
- 5. Повторите пункты 1-3, используя новую ватную палочку или специальный зонд. Положите новый отрезок палочки или зонда на тот же лист.
- 6. Просушите образцы ватных палочек или специальных зондов при комнатной температуре, избегая попадания прямых солнечных лучей в течение 30-60 минут.
- 7. Поместите каждый образец ватных палочек или специальных зондов в отдельную стерильную пробирку типа «Эппендорф», закройте пробирки.
- 8. Подпишите каждую пробирку, указав маркировку или шифр образца и дату взятия биологического материала.

Забор буккального эпителия по вышеописанной методике может производиться самостоятельно обследуемым под контролем медперсонала, процедура совершенно безболезненна, бескровна и не травматична.

Этап 3. Хранение и транспортировка биоматериала в генетическую лабораторию

- 1. При комнатной температуре пробирка с биоматериалом может храниться не более 6 часов, при температуре 2-8 °C до 3-х суток. Допускается только одноразовое замораживание материала.
- 2. Доставка пробирки в генетическую лабораторию должна происходить по стандартным правилам транспортировки биологического материала в специальном медицинском контейнере. Срок доставки биоматериала не должен превышать время хранения образца. При использовании обычного медицинского контейнера без охлаждения биоматериал должен быть доставлен в лабораторию не позднее 6 часов от момента его взятия или размораживания.

Этап 4. Выделение ДНК из биоматериала и генотипирование

Выделение из биоматериала ДНК осуществляется по стандартной методике. Аллельное состояние генов *CYP2D6*, *DRD2/ANKK1*, *MDR1*, *GST-M1*, *GST-T1*определяется стандартными методами ПЦР-ПДРФ и кПЦР-РВ с использованием зондов ТаqМапв молекулярно-генетической лаборатории (приложение 2).

КЛИНИЧЕСКОЕ ЗНАЧЕНИЕ РЕЗУЛЬТАТОВ ГЕНОТИПИРОВАНИЯ

1. Аллельное состояние гена СҮР2Д6:

- генотип A/A высокая вероятность развития острого лекарственного паркинсонизма. Рекомендовано: назначать *CYP2D6*-независимые антипсихотики (приложение 3, таблица 1): трифлуоперазин, клозапин, оланзапин, кветиапин, палиперидон.
- генотип G/A- средняя вероятность развития острого лекарственного паркинсонизма. Рекомендовано: назначать CYP2D6- независимые антипсихотики (приложение 3, таблица 1): трифлуоперазин, клозапин, оланзапин, кветиапин, палиперидон.
- **генотип G/G** низкая вероятность ЭПС. Рекомендовано: назначение лечения в соответствии с клиническими протоколами.

2. Аллельное состояние гена DRD2/ANKK1:

- генотип A1/A1 низкая вероятность ЭПС. Рекомендовано: назначение лечения в соответствии с клиническими протоколами.
- генотип A1/A2 низкая вероятность ЭПС. Рекомендовано: назначение лечения в соответствии с клиническими протоколами.
- генотип A2/A2 высокая вероятность развития острого лекарственного паркинсонизма. Рекомендовано: назначение антипсихотиков, которые обладают малой афинностью к D2-рецепторам (приложение3, таблица 2): хлорпротиксен, флупентиксол, сульпирид, амисульпирид, рисперидон, сертиндол, клозапин, оланзапин, кветиапин.

3. Аллельное состояние гена MDR1:

- **генотип С/С** низкая вероятность ЭПС. Рекомендовано: назначение лечения в соответствии с клиническими протоколами.
- генотип C/T низкая вероятностьЭПС. Рекомендовано: назначение лечения в соответствии с клиническими протоколами.
- генотип Т/Т высокая вероятность развития острого лекарственного паркинсонизма. Рекомендовано: назначение антипсихотиков, являющихся субстратами гликопротеина-Р: трифлуоперазин, хлорпромазин, флуфеназин, зуклопентиксол, флупентиксол, хлорпротиксен, сульпирид, рисперидон, оланзапин, кветиапин, арипипразол, сертиндол, зипрасидон, клозапин, амисульпирид.

4. Наличие делеции в гене GST-M1:

- **нет делеции** низкая вероятность ЭПС. Рекомендовано: назначение лечения в соответствии с клиническими протоколами.
- делеция высокая вероятность развития острой лекарственной акатизии. Рекомедовано: назначение антипсихотиков, не образующих активные метаболиты (приложение3, таблица 3): флуфеназин, трифлуоперазин, галоперидол, зуклопентиксол, клозапин, оланзапин, сульпирид, амисульпирид, арипипразол, палиперидон.

5. Наличие делеции в гене GST-T1:

- **нет** делеции низкая вероятность ЭПС. Рекомендовано: назначение лечения в соответствии с клиническими протоколами.
- делеция высокая вероятностьразвития острой лекарственной акатизии. Рекомедовано: назначение антипсихотиков, не образующих активные метаболиты (приложение3, таблица 3): флуфеназин, трифлуоперазин, галоперидол, зуклопентиксол, клозапин, оланзапин, сульпирид, амисульпирид, арипипразол, палиперидон.

При наличии аллелей риска в нескольких генах у одного пациента, следует учитывать рекомендации по каждому пункту. Например, у пациента выявлены следующие генотипы: G/Aв гене CYP2D6, A2/A2 в гене DRD2/ANKK1, C/T в гене MDR1, делеция гене GST-M1 и делеция в гене GST-T1. Следовательно, у пациента имеется высокий риск развития как острого лекарственного паркинсонизма, так и острой лекарственной акатизии. Для минимизации риска развития этих осложнений, ему могут быть рекомендованы только следующие антипсихотики: клозапин, оланзапин. Т.е. те антипсихотики, которые повторяются в рекомендациях к каждому из данных аллельных состояний исследуемых генов.

ПЕРЕЧЕНЬ ВОЗМОЖНЫХ ОШИБОК

Использование любых нагревательных приборов (фен, примус, микроволновую печь и др.) для ускорения просушки, или просушиваниебиоматериала под прямыми солнечными лучами.

При нарушении проведения ПЦР могут быть неверные – ложноположительные или ложноотрицательные результаты. Во избежание диагностических ошибок лаборантам необходимо соблюдать основные правила работы в молекулярно-генетической лаборатории.

приложение 1

Перечень необходимого оборудования и реактивов с описанием стандартных методов для всех генотипируемых локусов:

Таблица 1 - Оборудование для проведения ПЦР

Наименование оборудования	Необходимое к-во
Амплификатор	5
Миницентрифуга-вортекс	5
Комплект пипеточных дозаторов (0,5-10 мкл; 5-50 мкл; 20-200 мкл; 200-1000 мкл)	5
Холодильник с морозильной камерой	5
Хладоэлемент	5

Таблица Оборудование ПЦР ДЛЯ детекции результатов путем электрофоретического разделения амплифицированных фрагментов

Наименование оборудования	Необходимое к-в		
рН-метр	5		
Водяная баня/СВЧ-печь	5		
Источник питания с постоянным током	5		
Камера для горизонтального электрофореза	5		
Комплект пипеточных дозаторов (0,5-10 мкл; 5-50 мкл; 20-200 мкл; 200-1000 мкл)	5		
Набор пластиковых кювет для геля	5		
Набор планшетов для смешивания образцов с краской	5		
Набор посуды для приготовления агарозного геля	5		
Трансиллюминатор	5		

Таблина 3 - Реактивы для проведения ППР

Наименование реактива	Назначение реактива	Кол-во на 1 исслед. 1,5 мкл	
10x буфер для taq-полимеразы	Смесь реактивов для создания оптимальных условий для taq- полимеразы		
Таq-полимераза	Фермент, осуществляющий синтез ДНК	1,5 ед.	
MgCl ₂ 25 mM	Донор ионов Mg ²⁺ , необходимых для работы taq-полимеразы	0,9 мкл	
Смесь dNTP25 mM (дезокси- рибонуклеотидтрифосфатов)	Мономер для синтеза ДНК	1,8 мкл	
Олигонуклеотидныепраймеры 10 pM	«Затравка» для начала синтеза новой нити ДНК	По 0,75 мкл каждого	
Образец тотальной ДНК	Матрица для синтеза ДНК	1,2 мкл	
ДМСО	Увеличивает вязкость смеси и денатурацию исходной ДНК-матрицы	0,6 мкл	
Стерильная бидистиллированная свободная от нуклеаз вода	Растворитель	4,2 мкл	

Таблица 4 - Реактивы для проведения электрофоретического разделения продуктов амплификации

Наименование реагента	Назначение реагента	Кол-во на 1 исследование
Агароза	Компонент агарозного геля	2г

Трис-основание	Компонент ТАЕ-буфера	5,3 г
Ледяная уксусная кислота	Компонент ТАЕ-буфера	1,3 мл
ЭДТА	Компонент ТАЕ-буфера	2,2 мл
Водный раствор NaOH	Компонент ТАЕ-буфера	20 мкл
Бромфеноловый синий	Компонент загрузочного буфера	0,4 мг
Сахароза Компонент загрузочного буфера		64 мг
Дистиллированная вода	Растворитель	20 мл
Маркер молекулярного веса	Набор фрагментов ДНК известного	0,075 мкл
	размера для определения размеров	
	полученных ампликонов	

Таблица 5 — Последовательности праймеров, использованных для проведения ПЦР для определения полиморфных аллелей исследованных генов

Ген	Полиморфный локус	Последовательность олигонуклеотида				
DRD2	rs1800497	[F] – 5'-CCGTCGACGGCTGGCCAAGTTGTCTA-3'				
DKD2	131800497	[R] – 5'- CCGTCGACCCTTCCTGAGTGTCATCA-3'				
GST-M1		[F] -5'-GAACTCCCTGAAAAGCTAAAGC-3'				
GST-MT	-	[R] -5'-GTTGGGCTCAAATATACGGTGG-3'				
GST-T1		[F] – 5'-TTCCTTACTGGTCCTCACATCTC-3'				
-		[R] -5'-TCACCGGATCATGGCCAGCA-3'				
		[F] -5'-TGCCGCCTTCGCCAACCACT- 3'				
CYP2D6	rs 3892097	[R] - 5'-TCGCCCTGCAGAGACTCCTC- 3'				
	ma1045642	[F] -5'-GATGGCAAAGAAATAAAGCGACTG- 3'				
MDR1	rs1045642	[R] - 5'-ACCAGCCCCTTATAAATCAAACTA- 3'				

Расходные материалы: резиновые перчатки, наконечники для дозаторов (до 10, 200, 1000 мкл), пробирки Eppendorf (1,5 мл), ПЦР-пробирки (0,2 мл), штативы для пробирок, стеклянная химическая посуда.

Таблица 6 – Состав растворов для проведения горизонтального агарозного гельэлектрофореза

Раствор/компонент	Кол-во				
2% агароза					
Агароза	2 г				
ТАЕ буфер 50х	2 мл				
Дистиллированная вода До 100 мл					
Бромистый этидий До конечной концентрации 0,0001%					
Трис-ацетатный (ТАЕ) буфер 50х					
Трис-основание	242 г				
Ледяная уксусная кислота	57 мл				
ЭДТА-Na ₂ 0,5 моль/л (рН 8,0)	100 мл				

Дистиллированная вода	До 1 л
ЭДТА-Na ₂ 0,5 моль/л (pH 8,0)	
ЭДТА	186,1 г
Водный раствор NaOH	До рН 8,0
Дистиллированная вода	До 1 л
Загрузочный буфер	
Бромфеноловый синий	0,125 г
Сахароза	20 г
Дистиллированная вода	До 50 мл

приложение 2

Приготовление геля

Для приготовления агарозного геля следует смешать необходимые объемы ТАЕ буфера 50х и дистиллированной воды (таблица 6) в мерном цилиндре. Затем перелить полученный буфер в колбу с соответствующим количеством агарозы. После чего нужно нагреть смесь на водяной бане или в СВЧ-печи до полного растворения агарозы и добавить бромистый этидий. Расплавленную агарозу залить в кювету с установленной гребенкой и подождать 10-15 минут до полного застывания геля. Полученный гель следует поместить в камеру для горизонтального электрофореза, заполненную ТАЕ 1х буфером.

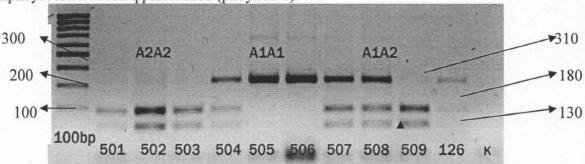
Внесение образцов в гель

Перед внесением следует смешать 5-7 мкл продукта амплификации с 2 мкл загрузочного буфера. Внесение образцов в лунки геля осуществлять с помощью пипеточного дозатора, используя индивидуальные наконечники для каждого образца. Для определения размеров полученных фрагментов следует внести в одну из лунок геля маркер молекулярного веса. Для постановки реакции необходимы маркеры, содержащие фрагменты ДНК от 100 до 500 пар оснований с интервалом в 100 пар нуклеотидов.

Оптимальным напряжением является 100 В. Электрофоретическое разделение продуктов осуществляется в течение 40-50 минут, после чего гель следует извлечь из камеры и промыть дистиллированной водой. Промытый гель поместить в проходящий УФ свет.

Генотипирование полиморфных локусов

1) Протокол генотипирования полиморфного локуса 32806C>T гена рецепторов D2 дофамина


Условия для амплификации.

Амплификационная смесь объемом 15 мкл содержала 30-40 нг ДНК-матрицы, по 1 мкл каждого из праймеров (концентрация праймеров 10 пикомоль/мкл) (таблица 3), 1 мкл $MgCl_2(25 \text{ mM})$, 1,5 мкл смеси dNTP (2,5 mM), 1,5 мкл 10х буфера (750 ммоль/л Tris-HCl (pH 8.8), 200 ммоль/л (NH_4) $_2SO_4$, 0.1% Тритон X-100, 10 моль/л Тартразин, 5% Фикол 400), 0,15 мкл (0,75 единицы) taq-ДНК-полимеразы (Dialat) и 7,15 мкл стерильной деионизованной воды. Амплификация проводилась при следующих условиях:

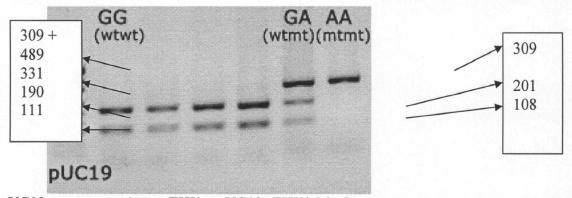
Эндонуклеазная рестрикция ампликонов. После амплификации продукт ПЦР величиной 310 пн подвергался расщеплению с помощью специфической эндонуклеазы TagIA. К 10 мкламплифицированных образцов добавляли по 5 мкл премикса для рестрикции: 1,5 мкл буфера Tango/Tag, 0,5 мклрестриктазыТagA1 (Fermentas, Латвия) и 3 мкл стерильной деионизованной воды на каждый образец. Далее пробирки с помещали на 8 часов (на ночь) в термостат при температуре 65°C.

Электрофорез в агарозномгеле.Продукты рестрикции наносили на 2% агарозный гель, содержащий этидиум бромид (0,0001%). Разделение рестрикционных фрагментов величиной 310 п.н. (А1 аллель) и 180 + 130 п.н. (А2 аллель) проводили в аппарате для горизонтального гель-электрофореза в 1хТАЕ буфере при напряжении 100В. Полученную электрофореграмму фиксировали с помощью системы гель-документирования VilberLourmat (Франция). Гомозиготные генотипы «А1А1» и «А2А2» определяются по

наличию на электрофореграмме фрагментов длиной 310 п.н. и 180 + 130 п.н. соответственно. Гетерозиготный генотип «A1A2» определяется на электрофореграмме присутствием всех фрагментов (рисунок 1).

501-509 — номера проб; 100bp — маркер длин ДНК; вверху — аллельное состояние гена DRD2TagI; справа — размеры амплифицированных фрагментов (310 п.н. для A1A1генотипа и 180 и 130 п.н. для A2A2 генотипа); слева — размеры фрагментов маркера длин ДНК 100bp

Рисунок 1 -Электрофореграмма продуктов амплификации


2) Протокол генотипирования полиморфного локуса СҮР2D6*4

Генотипирование по полиморфным аллелям исследованных локусов проводилось с применением ПЦР-анализа. Для проведения генотипированияаллелей CYP2D6 *4 были использованы праймеры, указанные в таблице 1.

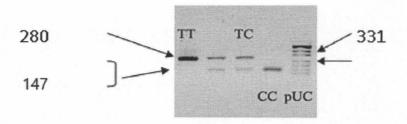
Условия для амплификации. Амплификационная смесь объемом 15 мкл содержала 30-40 нг ДНК-матрицы, по 1 мкл каждого из праймеров (концентрация праймеров 10 пикомоль/мкл) (таблица 3), 0,7 мкл $MgCl_2(25 \text{ mM})$, 1,5 мкл смеси dNTP (2,5 mM), 1,5 мкл 10x буфера (750 ммоль/л Tris-HCl (pH 8.8), 200 ммоль/л $(NH_4)_2SO_4$, 0.1% Тритон X-100, 10 моль/л Тартразин, 5% Фикол 400), 0,15 мкл (0,75 единицы) taq-ДНК-полимеразы и 8,15 мкл стерильной деионизованной воды. Амплификация проводилась при следующих условиях:

Эндонуклеазная рестрикция ампликонов. После амплификации продукт ПЦР величиной 309 пн подвергался расщеплению с помощью специфической эндонуклеазы MvaI. К 10 мкламплифицированных образцов добавляли по 5 мкл премикса для рестрикции: 1,5 мкл буфера Tango/Tag, 0,3 мклрестриктазы MvaI и 3,2 мкл стерильной деионизованной воды на каждый образец. Далее пробирки помещали на 8 часов (на ночь) в термостат при температуре 37°C.

Электрофорез в агарозномгеле. Продукты рестрикции наносили на 2% агарозный гель, содержащий этидиум бромид (0,0001%). Разделение рестрикционных фрагментов величиной $309\,$ п.н. (мутантный "mt" или A аллель) и $201\,+\,108\,$ п.н. (дикий "wt" или G аллель) проводили в аппарате для горизонтального гель-электрофореза в 1хТАЕ буфере при напряжении 100В. Полученную электрофореграмму фиксировали с помощью системы гель-документирования VilberLourmat (Франция) (рисунок 2).

pUC19 — маркер длин ДНК «pUC19 ДНК/ MspI»; вверху — аллельное состояние гена CYP2D6; справа — размеры амплифицированных фрагментов (309 п.н. для AA(mtmt)генотипа и 201 и 108 п.н. для GG(wtmt) генотипа); слева — размеры фрагментов маркера длин ДНК pUC19/MspI

Рисунок 2 -Электрофореграмма продуктов амплификации


3) Протокол генотипирования полиморфного локуса rs1045642 (C3435T) гена MDR1

Генотипирование по полиморфным аллелям исследованных локусов проводилось с применением ПЦР-анализа. Для проведения генотипирования аллелей MDR1C3435T были использованы праймеры, указанные в таблице 1.

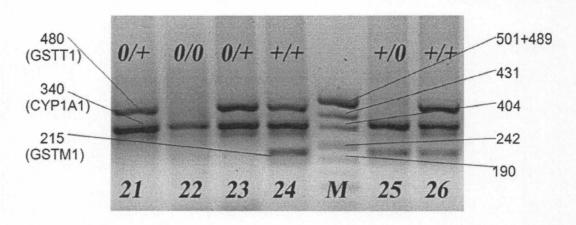
Условия для амплификации. Амплификационная смесь объемом 15 мкл содержала 30-40 нг ДНК-матрицы, по 1 мкл каждого из праймеров (концентрация праймеров 10 пикомоль/мкл) (таблица 3), 0,7 мкл $MgCl_2(25 \text{ mM})$, 1,5 мкл смеси dNTP (2,5 mM), 1,5 мкл 10x буфера (750 ммоль/л Tris-HCl (pH 8.8), 200 ммоль/л (NH_4) $_2SO_4$, 0.1% Тритон X-100, 10 моль/л Тартразин, 5% Фикол 400), 0,15 мкл (0,75 единицы) taq-ДНК-полимеразы и 8,15 мкл стерильной деионизованной воды. Амплификация проводилась при следующих условиях:

Эндонуклеазная рестрикция ампликонов. После амплификации продукт ПЦР величиной 280 п.н. подвергался расщеплению с помощью специфической эндонуклеазы МьоІ. К 10 мкламплифицированных образцов добавляли по 5 мкл премикса для рестрикции: 1,5 мкл буфера Tango/Tag, 0,1 мклрестриктазы МьоІ и 3,4 мкл стерильной деионизованной воды на каждый образец. Далее пробирки помещали на 8 часов (на ночь) в термостат при температуре 37°С.

Электрофорез в агарозномгеле.Продукты рестрикции наносили на 2% агарозный гель, содержащий этидиум бромид (0,0001%). Разделение рестрикционных фрагментов величиной 280 п.н. (Т аллель) и 147 + 133 п.н. (С аллель) проводили в аппарате для горизонтального гель-электрофореза в 1хТАЕ буфере при напряжении 100В. Полученную электрофореграмму фиксировали с помощью системы гель-документирования VilberLourmat (Франция) (рисунок 3).

pUC19 — маркер длин ДНК «pUC19 ДНК/ MspI»; TT, TC, CC - генотипы полиморфного локуса MDR1C3435T; слева — размеры амплифицированных фрагментов; справа — размеры фрагментов маркера длин ДНК pUC19/MspI

Рисунок 3 - Электрофореграмма продуктов амплификации


4) Протокол генотипирования полиморфных локусов GSTM1(del) и GSTT1(del)

Определение аллельного состояния генов GSTM1и GSTT1проводилось в мультиплексной реакции, внутренним контролем нативности ДНК образца служила амплификация в той же пробирке гена CYP1A1.

Реакционная смесь для амплификации объемом 25 мкл содержала по 10 пикомоль прямого и обратного праймера для каждого из генов, 1 мклМgCl₂, 2,5 мкл смеси dNTP, 2,5 буфера фирмы *Диалат* (*Москва*), 0,5 мклТаq-полимеразы (*Диалат*, *Москва*), 1,5 мкл раствора ДНК. Амплификация проводилась при следующих условиях:

Ген GSTM1 картирован на длинном плече хромосомы 1 (1q13). В тканях человека обнаружены три аллельных варианта этого гена: GSTM1A и GSTM1B, которые кодируют ферменты со сходной активностью, и GSTM10, отличающийся от остальных наличием протяженной делеции (около 8 т.п.н.), что проявляется в полном отсутствии синтеза белкового продукта. Этот, так называемый, нулевой аллель (генотип 0/0) весьма широко распространен (до 100% в некоторых популяционных группах). Ген GSTT1 локализован на 22 хромосоме (22q11.23). Как и в случае с геном GSTM1, с высокой частотой обнаруживается большая делеция в структурной части этого гена (около 30% европеоидов гомозиготны по данной делеции).

Присутствие хотя бы одного неделетированногоаллеля гена GSTM1 (генотипы +/+ и +/0) определялось по наличию на электрофореграмме фрагмента длиной 215 п.н., его отсутствие свидетельствовало о гомозиготности по нулевому аллелю (генотип 0/0). Соответствующий размер для гена GSTT1-480 п.н. Успешность прохождения амплификации определялась по присутствию фрагмента гена CYP1A1 размером 340 п.н. (рисунок 4).

21-26 — номера проб, М — маркер длин ДНК pUC/MspI, вверху — аллельное состояние генов GSTM1/GSTT1, слева — размеры амплифицированных фрагментов и названия соответствующих им генов, справа — размеры фрагментов маркера длин ДНК pUC19/MspI. Размеры даны в парах нуклеотидов

Рисунок 4 – Электрофореграмма продуктов амплификации

приложение 3

Таблица 1 - Субстратная специфичность лекарственных средств из группы антипсихотиков

код ATC/DDD	Лекарственные средства из группы антипсихотиков	Семейства системы ферментов СҮР 450								
		CYP2D6	CYP3A4	CYP1A2	CYP2C19					
N05AA	Phenothiazines aliphatic side-chair	1								
N05AA011	Chlorpromazine	++	+	+	-					
N05AB	Phenothiazines piperazine									
N05AB02	Fluphenazine	++		- H <u>-</u>	-					
N05AB03	Perphenazine	++	++	++	++					
N05AB06	Trifluoperazine	-	_	++	-					
N05AC	Phenothiazines piperidine									
N05AC01	Periciazine	++	++	_	-					
N05AC02	Thioridazine	++	++	++	++					
N05AD	Butyrophenone derivatives									
N05AD01	Haloperidol	++	++	+	+					
N05AE	Indole derivatives									
N05AE03	Sertindoli	++	++		_					
N05AF	Thioxanthene derivatives									
N05AF04	Thiothixene	_	_	++	- 1					
N05AF05	Zuclopenthixol	++	-		-					
N05AG	Diphenylbutylpiperidine derivative	es								
N05AG02	Pimozide	_	++	++	_					
N05AH	Diazepines, oxazepines, thiazepine	s and oxepines								
N05AH02	Clozapine	+	++	++	+					
N05AH03	Olanzapine	++	<u> </u>	++						
N05AH04	Quetiapine	+	++	<u>-</u>	-					
N05AL	Benzamides									
N05AL01	Sulpiride	++	-		_					
N05AX	Other antipsychotics									
N05AX12	Aripiprazole	++	+	T						
N05AX13	Paliperidone	++	++							
N05AX08	Risperidone	++	+		_					

Примечание: «++» - основной метаболический путь, «+» дополнительный, запасной (второстепенный) метаболический путь

Таблица 2 – Фармакокинетические параметры лекарственных средств из

гр	уппы антипсихотиков							
код ATC/DDD	Лекарственные средства из группы антипсихотиков	Фармакокин	Фармакокинетические параметры					
	Биодоступно сть (%)	Время полужизни (ч)	Активные метаболиты	Пути элиминации				
N05AA	Phenothiazines aliphatic	side-chain			1			
N05AA011	Chlorpromazine	50	30	есть	почки, кишечник			
N05AB	Phenothiazines piperazir	ne						
N05AB02	Fluphenazine(depo)	65	7-10 дней	нет	почки, печень			
N05AB03	Perphenazine	70	8-12	нет	почки			
N05AB06	Trifluoperazine	35	15-30	нет	почки, кишечник			
N05AC	Phenothiazines piperidin	ie						
N05AC01	Periciazine	90	12-30	нет	почки, кишечник			
N05AC02	Thioridazine	50	6-40	есть	почки, кишечник			
N05AD	Butyrophenone derivativ	res						
N05AD01	Haloperidol	60	12-37	нет	почки, кишечник			
N05AE	Indole derivatives							
N05AE03	Sertindoli	75	72	есть	кишечник			
N05AF05	Zuclopenthixol	44	32	нет	почки, кишечник			
N05AH	Diazepines, oxazepines,	thiazepines and ox	repines					
N05AH02	Clozapine	50-60	8-12	нет	почки, кишечник			
N05AH03	Olanzapine	60	21-54	нет	почки, кишечник			
N05AH04	Quetiapine	83	7	есть	почки, кишечник			
N05AL	Benzamides							
N05AL01	Sulpiride	27	6-8	нет	почки			
N05AL02	Amisulpiride	48	3-4	нет	почки			
N05AX	Other antipsychotics							
N05AX12	Aripiprazole	87	75	нет	почки, кишечник			
N05AX13	Paliperidone	28	23	нет	почки, кишечник			
N05AX08	Risperidone	70-94	20	есть	почки, кишечник			

Таблица 3 – Профиль действия антипсихотических лекарственных средств на

рецепторы головного мозга

ЛС из группы антипсихотиков	Рецепторы головного мозга								
	D1	D2	D3	D4	5- HT2a	5- HT2c	α1	M	H1
Clorpromazine	-	+++	+++	+	+++	?	+++	++	++
Clorprotixen	+	++	?	?	+++	?	+++	++	-
Fluphenazine	++	+++	?	?	++	+	++	-	+
Flupenthixol	++	++	?	?	+	?	+	-	-
Zuclopenthixol	+	+++	?	?	+	?	++	-	-
Haloperidol	+-	++++	+++	+++	+	-	++	-	-
Sulpiride	-	++	?	-	-	?	-	-	-
Amisulpiride	-	++	?	-	-	?	-	-	-
Risperidone	+-	++	++	++	++++	+	+++	-	+
Sertindoli	+-	++	++	++	++++	+++	+++	-	-
Ziprasidoni	-	+++	++	+	+++	++	++	-	+-
Clozapine	+-	++	+-	+	+++	++	+++	+++	++
Olanzapine	-	++	-	-	++	+	-	-	-
Quetiapine	+-	+	+	-	++	+-	+++	-	++
Aripiprasole	+++	++++	++	++	+++	++	-	?	?

Примечание: D — дофаминовые, 5-HT — серотониновые, $\alpha 1$ — адреналовые, M — мускариновые, H1 — гистаминовые рецепторы; «-» — отсутствие активности, «+-» — активность сомнительна, «+» — слабая активность, «++» — умеренная активность, «+++» — выраженная активность, «+++» — максимальная активность, «?» — отсутствие данных